IOWA STATE UNIVERSITY

Department of Electrical and Computer Engineering

SDMAY20-53: Smart Backpack Sprayer

David Hayes (Communication Engineer) Madison Kriege (Communication Engineer) Kevin Davis (Hardware Research Engineer) Sean Doran (Logistics Engineer) Donald Laracuente (API Research Engineer) Shuangquan Li (iOS Engineer)

Client: IntelliSpray

Advisor: Dr. Daji Qiao

http://sdmay20-53.sd.ece.iastate.edu/

Problem Statement

- Problem:
 - Tracking when and where a user has sprayed is hard
 - User could forget where they have sprayed and spray areas twice or never
- Solution:
 - Collect data from a backpack sprayer on a phone
 - Store the data for the user to reference to ensure the best coverage

Functional Requirements

- The hardware shall
 - Use a GPS sensor with accuracy to 3 meters
 - Have a battery life at least 3 hours
 - Be mountable inside backpack sprayer
 - Package data in JSON format
 - Be able to send data using Bluetooth LE
- Data shall be collected in 1 second intervals
- The app shall
 - Display data in the map with a pin
 - Sync data between cloud and local
 - Display the data to the user
 - Support multiple users (login feature)

Non-Functional Requirements

- The system shall
 - Be water resistant
 - Be operable in temperatures between 0-40C
 - Be under 50 pounds
 - Be wearable on one's back
- The app shall
 - Only allow authorized access to the data
 - Support large amounts of data transmission

Technical and Other Constraints

- Mobile platform iOS
- Data format JSON
- Close range communication Bluetooth LE
- Low/off network connectability

Challenges, Risks, and Mitigation

- Size constraints
- iOS backwards compatibility with iOS 13
- Soldering
- Solutions
 - Using a smaller Arduino
 - It is not backwards compatible / Roll Back to 12
 - More practice

First Attempt

Second Attempt

System Architecture Diagram

Detailed Design - iOS Application

- Emphasis on user interface, system, and container/modular design
- Data Persistence
 - Receive data from hardware device
 - Store/cache data in local database
 - Sync to cloud at the same time
 - After passing the threshold, send data to cloud, and release local storage
- Technologies Used
 - SwiftUI, UIKit
 - CoreData, CoreBluetooth, CoreLocation
 - Firebase, Mapbox

Detailed Design Interface Diagram

Runtime User Interface Diagram

Detailed Design - API

- Emphasis on intuitive APIs
- Clean, Simple Database design
- Simple two-way API calls
- Technologies Used:
 - Firebase API
 - Mapbox SDK
 - Swift

Detailed Design - Hardware

- Emphasis on PCB Design
- Technologies Used
 - Arduino
 - ArduinoJSON
 - TinyGPS++
 - SoftwareSerial
 - CircuitMaker

Detailed Design Hardware

Image Key

Blue - Flow Sensor

Red - Compass/Accelerometer

Detailed Design Hardware

Arduino Mega 2560 Version

sdmay20-5316

Demo

Test Plan

- How is testing performed?
 - Simulator iOS 13
 - Real device iPhones
- Component/Unit testing
 - Testing each methods
 - Testing the modules of the hardware flow sensors, GPS sensors
- Interface/integration testing
 - Testing where top-level units are tested first and lower level units are tested step by step after that
- Acceptance testing
 - Testing all the listed requirement in the design document.

Test Results

- Hardware
 - GPS module tested individually Successful
 - Bluetooth module tested individually Successful
 - Flow sensor tested individually Successful
 - Compass sensor tested individually Successful
 - Integration of parts with backpack Successful
- Software
 - Login on app Successful
 - Received data through bluetooth Successful
 - Map plotting and storing mock data Partially Successful
 - Map plotting and storing real data Incomplete

Engineering Standards and

- Design Practices Software Development
 - - ISO/IEC 12207
 - Stakeholder needs and requirements
 - Systems/Software requirements
 - Integration
 - Ftc
 - **Digital Design** ٠
 - IEEE 1016
 - Data, Architecture, Interface, and Procedural Design

Future Work

- Analyze spray patterns to better plot them on a map
- Try a different communication method
 - WiFi
- Try a different controller
 - ESP32 Dual core processor
- Additional/Integration Testing
- Future development utilizing gyroscope data
- Other use cases
 - Proof of application
 - Drone application

What we learned/would change?

- Lessons learned
 - Develop to client requirements/project
 - Communicate openly with client and advisor throughout project
- Changes
 - More smaller deadlines
 - Collect more test data
 - Implement all of user interface in SwiftUI
 - Use WiFi instead of Bluetooth
 - Integrate earlier
 - Have a proper managed git repository

Conclusion

- Summary
 - Built an application and hardware that connect to a backpack sprayer allowing for data collection
- Issues encountered
 - Unable to get to field testing & client feedback
 - Implementation and integration logistical roadblocks
- Project Status
 - Rough Prototype created
 - Components are created
 - Testing in progress

Market Research

- Other Smart Backpack Sprayers:
 - AgTerra
 - Tracks location of user
 - Tracks what chemical has been sprayed
 - Android only
- Ours:
 - Tracks location of user
 - Tracks what chemical has been sprayed
 - Tracks where has been sprayed Coverage
 - iOS only

