
Smart Backpack Sprayer for
Small-Scale Agriculture Applications

Final Report

Team Number:

sdmay20-53

Client:
IntelliSpray

Advisor:

Dr. Daji Qiao

Team Members/Roles:
Kevin Davis - Hardware Research Engineer

Sean Doran - Logistics Engineer
David Hayes - Communication Engineer

Madison Kriege - Communication Engineer
Donald Laracuente - API Research Engineer

Shuangquan Li - iOS Engineer

Team Email:
sdmay20-53@iastate.edu

Team Website:

http://sdmay20-53.sd.ece.iastate.edu/

mailto:sdmay20-53@iastate.edu
http://sdmay20-53.sd.ece.iastate.edu/

Table of Contents

1.0 Revised Project Design 4

1.1 Acknowledgement 4
1.2 Problem and Project Statement 4
1.3 Operational Environment 4

1.3.1 Requirements 4
1.3.1.1 Functional Requirements 4
1.3.1.2 Economical Requirements 5
1.3.1.3 Non-Functional Requirements 5
1.3.1.4 Environmental Requirements 5

1.4 Intended Users and Uses 5
1.5 Assumptions and Limitations 5
1.6 Expected End Product and Deliverables 6

2.0 Specifications and Analysis 6
2.1 Proposed Design 6

2.1.1 Proposed Application Views/Layout 7
2.1.2 Proposed Hardware/Backpack Design 9
2.1.3 Proposed Architecture Design 9

2.2 Design Analysis 9
2.3 Development Process 10
2.4 Design Plan 10

2.4.1 Use case table 10
2.4.1 iOS 11
2.4.2 API 11
2.4.3 Hardware 12

3.0 Statement of Work 13
3.1 Previous Work and Literature 13
3.2 Technology Considerations 14
3.3 Task Decomposition 14
3.4 Possible Risks and Risk Management 14
3.5 Project Proposed Milestones and Evaluation Criteria 14
3.6 Project Tracking Procedures 15
3.7 Expected Results and Validation 15

4.0 Project Timeline, Estimated Resources, and Challenges 16
4.1 Project Timeline 16

4.1.1 Project Gantt Chart 16

4.2 Feasibility Assessment 16
4.3 Personnel Effort Requirements 18

4.3.1 Personal Effort Table 20
4.4 Other Resource Requirements 20
4.5 Financial Requirements 20

4.5.1 Bill of Materials/Financial Requirements 20

5.0 Testing and Implementation 20
5.1 Interface Specifications 21

5.1.1 For software (iOS) 21
5.1.2 For Hardware 21

5.2 Hardware and Software 21
5.2.1 For software (iOS) 21
5.2.1 For Hardware 21

5.3 Functional Testing 21
5.3.1 iOS Tests Table 22
5.3.2 Hardware Tests Table 23

5.4 Non-Functional Testing 23
5.4.1 iOS Non-Functional Tests Table 23
5.4.2 Hardware Non-Functional Tests Table 24

5.5 Process 24
5.5.1 Flow Diagram 24

5.6 Results 24
5.6.1 iOS 25
5.6.2 API 25
5.6.3 Hardware 25

6.0 Closing Material 25
6.1 Conclusion 25
6.2 References 26

1.0 Revised Project Design

1.1 Acknowledgement
We would like to thank our client, IntelliSpray, for proposing the project and helping throughout
the entirety of the project. They provided us with hardware, financial support to purchase
necessary components, and with technical guidance and support as needed for the project. We
would also like to thank our mentor, Dr. Qiao, for providing support with our documentation and
for providing technical support. Dr. Qiao also ensured our group was focused on the project and
that the team was working efficiently and in an organized way.

1.2 Problem and Project Statement
This project is modifying a backpack sprayer used for weed killers, bug spray, or similar
chemicals on small farms and acreages. Commercial backpack sprayers currently do not offer a
"smart" option, making it difficult for users to keep track of product placement information. We
will develop an iOS application, paired with an Arduino device inside the backpack, to meet
project requirements and provide users with spray information. This application will store
location, flow rate, time of coverage, and other relevant data. The purpose of our project is to
simplify the lives of our client base and reduce waste caused by excess chemical coverage.

1.3 Operational Environment
The operational environment for this project is an agricultural environment. This means that the
solution will be exposed to rain, wind, dirt, dust, chemicals, and other elements. The solution
must be robust such that it will function in a wide variety of conditions.

1.3.1 Requirements

1.3.1.1 Functional Requirements
● Read sensor data

○ Includes GPS location, rate of application
● Backpack sprayer must communicate with mobile app
● The app should analyze data
● Create a map of spray amount and time of application

1.3.1.2 Economical Requirements
Initial Budget of $750 from the clients. The clients will provide us with what is needed for
the completion of the project. This includes hardware such as the compass, gps module,
Arduino Mega 2560, flow sensor, and other components as needed. The clients will also
supply accounts for software/backend as needed.

1.3.1.3 Non-Functional Requirements
● Portable

○ Easily worn and carried on one’s back
● Scalable
● Reliable
● Intuitive and easy to learn/understand/use by a wide variety of users.

1.3.1.4 Environmental Requirements
● Waterproof: IP67
● Signal Range: 10m
● Temperature: -25 ~ 100 °C
● Altitude: 0 ~ 2500m
● Wind Speed: below 25 km/h

1.4 Intended Users and Uses
The intended user is one that works in a small scale agricultural environment. The user has a
need to spray the land somewhat frequently, where learning about each spray application would
be beneficial in order to maximize the efficiency of spraying and to learn from previous
applications. The use of this product is for a small scale operation so that the battery life and
amount of spray is sufficient to cover the desired area. The user will typically wear the product
while using it.

1.5 Assumptions and Limitations

1.5.1 Assumptions

● Limited Number of Users
● The end product will be used in spring and summer
● The end product will not be used in the rain
● The end product will be self-contained inside of the backpack
● Then end product will measure in imperial and metric units

1.5.2 Limitations

● GPS Measurement Accuracy within a meter

● Flow Rate Measurements based off of what the sensors allow
● Battery-life must meet Realistic usage times
● Expenses are within the $750 initial budget

1.6 Expected End Product and Deliverables

The deliverables are a backpack sprayer solution and a mobile application. These two need to
be able to communicate together and create the “smart” backpack sprayer.

The backpack sprayer shall be a portable/wearable solution that will allow the user to spray
substances on the small-scale agricultural operation. This will also include sensors that are able
to collect GPS coordinates, directional data, and flow data from the backpack sprayer. An
Arduino housed within the backpack will be a component of this solution. The Arduino will use
Bluetooth to send data to the user’s mobile device.

The mobile application will be developed for iOS. It shall be able to receive data from the smart
backpack using Bluetooth and then parse this data and represent it in a clear and effective way
to the user. This will include a map of the locations sprayed as well as the flow rate at each
location, the time of the spraying, direction of where the spray was directed, and what was being
sprayed from the backpack. The application will be able to record historical data from previous
sprays.

2.0 Specifications and Analysis

2.1 Proposed Design

So far, the proposed design can be summarized by the following diagrams/figures. We will use
an iOS application, and the screens that will be in this app can be shown in the diagram as well.

2.1.1 Proposed Application Views/Layout

In order to gather data about the spraying application, several sensors will need to be used
during the time of the spray. An Arduino Mega 2560 has been purchased and will be used to
control all of the sensors, gather data, and send data to the mobile application. The sensors that
have been purchased are a GPS module(Neo 6m), a Bluetooth module, a flow meter, and a
compass. The GPS module will be used to gather the coordinates of the sprayer, which will then
be used to map which area has been sprayed. The compass will show direction or spray and
give a more accurate description of what was sprayed. The flow sensor will be attached to the
hose of the sprayer and record how much spray has been used and where the spray was used.
The Bluetooth module will be used to send the aggregated data to the mobile application. This
will cover the functional requirements of the hardware. Accuracy testing is necessary to ensure
that all of the requirements are being fulfilled. If it is discovered that a requirement is not being
satisfied, different hardware components will be evaluated as part of finding a solution. After
evaluation, a PCB that will allow for easy connection of the hardware to the Arduino Mega 2560
will be designed and developed. This will make it simple to hold the necessary hardware on the
backpack sprayer when in use.

2.1.2 Proposed Hardware/Backpack Design

2.1.3 Proposed Architecture Design

2.2 Design Analysis

Researching hardware components and purchasing those that best fit the needs of the project
was the initial step in analyzing the project’s design. Finding and verifying that hardware exists
for the needs of the project proves that the overall design is feasible. After purchasing
appropriate hardware, completing testing of each component to ensure the accuracy and quality
of the component will satisfy both the functional and non-functional requirements is necessary.
The GPS module has been tested outdoors and shown to have accuracy within 2-3 meters. This
will be adequate for the project’s needs. The flow meter has also been tested and shown to be
accurate when running water through it. Running about 3L of water resulted in a reading of
3.03L, which is accurate enough for the requirements captured. One strength we have learned
in the design analysis is how precise our equipment is. It has been higher than expectations and
should help provide accurate data to the user. A few weaknesses we have are not getting

different types of hardware to test the difference. We did get a couple of GPS sensors, but only
one type of each of the other sensors.

2.3 Development Process
As the project becomes more mature and the necessary tasks are known, the development
process that will be followed is Agile. This process will be utilized in all components of the
project, from the mobile application to the APIs used, to the hardware development.

2.4 Design Plan

Use Case Requirement Dependency

Spray the fields Portable/Backpack Sprayer Purchase and modify
sprayer/hardware.

Collect the data Hardware sensors for GPS,
flow, direction, Bluetooth,
Arduino

Purchase appropriate
hardware and connect to
Arduino. Be able to spray
fields.

Upload the data to the phone Bluetooth connection
between hardware and
mobile application

Use Bluetooth module, ability
to connect to the mobile
application, be able to spray
fields.

Upload the data from phone
to database

Store historical data about
spraying application

Have spray data, have a
database setup, enable
communication between
mobile application and
database.

View the data on Mapbox on
phone

Display spray data on a map
for the user.

Ability to use Mapbox/create
a map, ability to get data from
the backpack in a readable
format on iOS.

2.4.1 Use case table

2.4.1 iOS

The initial design required Bluetooth communication between hardware devices and iPhones,
data presentation and data persistence, and user interface construction. We chose to start
implementing the user interface first, we have 3 main views for the UI which are Map View, Data
View, and Profile View. For each view, they have their own sub-views. For the Map View, there
are pins representing where did the user spare, and those pins can be tappen on after you tap
on it, it will give you a detail of the time, GPS data, and direction at that pin. Also, the user’s
current location will be displayed as well. Moving on to the Data View, it contains all historical
data for the past period of time, those data are grouped by activities, each activity represents
each user usage, from start to end. Under those activities section, is a detailed data point, with
complete data information, like, compass data, GPS data, temperature, direction, date, and
time. Each of those individual data sections also corresponds to a pin in the Map View. Lastly,
for Profile View, it contains user information, and a button to give the user a customised setting.

The next cycle of development, we start to do the integration between apps and hardware
devices, we choose to use CoreBluetooh SDK for searching BLE devices, establishing a
connection, and transmitting data. The main logic is, we first find the target device, then asking
for its UUID, after confirming the connection, we start to transmit data. Upon data received by
the iPhone, the corresponding method starts to analyze the JSON data, and use them to
construct objects, and at the same time use the GPS from it to plot pins on the map. At this
stage, the object we created using JSON is also stored in the local database. Later, we start to
integrate local and cloud, we use firebase as our backend, during the time we store data to local
we also send it to the cloud.

Last, we start the testing process by doing unit testing for each function, then we make a beta
version of the app to distribute it to different iPhones via TestFlight, then gather feedback from it
to improve our application.

2.4.2 API

The initial design of the API includes the communication between the iPhone application and
Firebase/Mapbox.

Inside of Firebase, we created a project that included access to Firebase Auth and Firebase
Firestore. This will allow users to securely login to the application and access their personal
data. The Firestore instance allows us to store the data received from the hardware for later
use. The main goal of the project was to allow users to view historical data in the application
interface.

The next step of development was importing the needed CocaPods into the XCode project. This
allows us to connect to various Firebase SDK from the iPhone application. More details about
the iPhone application and its development can be found in “2.4.1 iOS”.

Our next development step of the project was the implementation of the Mapbox SDK. This
SDK allows the iOS application to send and receive various mapping data from the Mapbox
platform. Once the data is received from the hardware, it is processed on iOS and sent to
Mapbox to create the various MapViews.

2.4.3 Hardware

The initial design required an analysis of hardware component options. Due to the availability
and ease of development, an Arduino Mega 2560 was chosen. It includes plenty of interfaces to
connect various sensors. The project also requires a flow meter sensor, a compass sensor, a
GPS module, and a Bluetooth module to satisfy the client’s requirements. These components
are also readily available, and able to be integrated with the Arduino Mega 2560. After
consulting with the client and advisor, the components were selected.

The next step of development required testing each component individually. A small program
was written to run on the Arduino that will capture the appropriate data for each sensor. The
goal of this task is to ensure that the purchased sensors function as expected as well as have
an accuracy that satisfies the hardware functional requirements. Most of the sensors have
guides available online that aid in the development of his test programs.

Once each sensor has been tested for functionality on the Arduino Mega 2560, integrating all
sensors together in one program was the next task. The goal of this task was to have one
program that could collect data from all the sensors and send it via Bluetooth to the phone. To
accomplish this task, we used snippets of code from our individual testing and integrated them
together.​ ​The program collects data at a 1-second frequency.

One of the components that proved most challenging is the GPS module. The reliability of the
module has proved troublesome and often takes a prolonged period of time to begin gathering
data and reporting the coordinates to the Arduino. Because of this, the mapping feature and
data packaging are delayed, or rendered infeasible/useful. In the future, other GPS sensors
would be considered, with the goal to enhance the functionality of the hardware as a hole on the
backpack sprayer.

With support, guidance, and approval, a backpack sprayer Field King 190515 was chosen and
purchased. The main criteria for the backpack are size, battery life, and the ability to mount
various hardware components.

After initial testing, it was determined that a PCB designed to allow all sensors to easily connect
to the Arduino will be beneficial to the project. Development of a PCB that is of identical size to
the Arduino Mega 2560, has headers that each sensor can connect to, and removes the use of
many wires on the Arduino began as a first version. (add more about it)

Once creating the first version of the PCB, soldering the components and headers on allowed
for members of the team to learn new skills, while also benefiting the project. 3 PCBs were
ordered through ETG, so the team was able to build upon a first attempt to produce a higher
quality PCB, using the labs on campus. However, after fitting the PCB and Arduino Mega 2560
into the backpack, the fit is too small to comfortably power the Arduino while the backpack’s
battery is also in the compartment.

To solve this, an alternative to the Arduino Mega 2560 was considered. This alternative is the
Arduino UNO, due to its smaller footprint. It contains the same functionality that is required but
will fit better in the backpack. A second PCB, developed for the Arduino UNO, was completed.
Due to constraints of this semester, the team was unable to purchase and order this 2nd PCB.

3.0 Statement of Work

3.1 Previous Work and Literature

While we are not directly following any other products, similar solutions do exist for large scale
agricultural operations. These solutions allow one to collect smart data about spraying
applications, such as flow, time, location, etc. - Similar to the goals of this project. The purpose
of this project is to use similar technology, but for a small scale operation. The usage of these
technologies is similar, but the solution developed for this project is unique and not based on
any particular existing work.

Due to events of the semester that are outside the control of this project, testing, integration,
and work on the project was hindered. The team was unable to meet in person for testing,
development, and work in general in the ladder part of the fall semester. This made producing a
comprehensive deliverable as outlined originally unrealistic. After talking with the client and
advisor, adjustments were made to complete as much work as possible. The hardware was
integrated as much as possible, but testing with the application was not realistic due to the
aforementioned constraints. Much of the project’s individual components are complete, and
there are no foreseen issues in the integration of these components.

3.2 Technology Considerations

There is a lot of technology available for this project. There are many microcontrollers out there
that we could use. One of the strengths because we have so many options is the controllers are
very cheap. One weakness is that you cannot test out to see what microcontroller would work
the best. Some of the trade-offs we make are we just got a microcontroller that was pretty cheap
and did not do too much research into it. There are a lot of considerations that need to be made
with the hardware. We are still working out what all of these are and will expand this section. For
the mobile application, both Android and iOS were considered. Given group experience and
opportunity for growth, iOS was decided upon. As for the mapping ability, the main
considerations were Google Maps and Mapbox. Ultimately Mapbox was chosen for cost and
feature reasons.

3.3 Task Decomposition

To solve the problems the team faces and accomplish the outlined goals, the team has split into
3 teams. One team focuses on the mobile application, one focuses on the API and the backend,
and the third team focuses on hardware. While all teams must communicate and work together,
each team is able to focus on specific challenges and collaboration amongst the team to
progress the project.

3.4 Possible Risks and Risk Management

The main risks that the project faces are related to the technology being used. The hardware
sensors, mapping tools/API, and communication techniques. If these end up not working after
considerable time is devoted towards a particular solution, the quality of the final product may
be hindered. This is why it is important to continuously test and consider possible impacts on
the project throughout the process. For example, the GPS module proved to be inaccurate
during initial testing. Because of this, the team decided to purchase a more accurate antenna to
help satisfy the GPS functional requirements.

3.5 Project Proposed Milestones and Evaluation Criteria

Key milestones can be for each team - the iOS team, the API team, and the hardware team - as
well as looking at the project as a whole. Creating a running application that outlines the
necessary functionality is a milestone for the iOS team. Talking with the backend and
establishing proper communication with APIs is another milestone. Creating a backpack sprayer
that can hold the necessary hardware and collect data is a hardware milestone. Sending real

data from the backpack to the application is a milestone too. Putting everything together and
displaying smart spraying data to the user is the ultimate milestone for the project.

Integration and final testing will lead to a functional prototype, so this is one of the last large
milestones of the project. The deliverable that is expected is a working prototype, so being able
to create this prototype and do formal testing is near the completion of the project.

For each milestone, test cases that align with the requirements and ensure that the solution is
properly made, by looking at efficiency, user experience, accuracy, etc. are some of the ways
that these milestones will be evaluated.

3.6 Project Tracking Procedures

We will use GitLab Issues to track the project’s tasks and progress throughout the course of the
project, including both this semester and next semester. We will be able to centralize all of the
work with this tool and effectively track progress at all times, as well as have the ability to go
back and look at issues and work that has been completed. It will allow for the planning of the
project too.

3.7 Expected Results and Validation

Along with meeting the functional and non-functional requirements, the desired outcome of this
project is to be able to report spraying information back to a mobile device. The sprayer should
be able to wirelessly communicate with an app to share data such as chemical, flow rate, time,
GPS coordinates of spray, and direction. This information should be able to be displayed in an
easy to understand map for the user. Users should be able to store historical data related to
spraying applications.

Due to the changes of the semester, and the fact that most of the team was unable to meet in
person for formal testing and integration. This changes our expected results. The team is only
able to complete each component individually, and do “as much as possible” integration. So, the
result of this is that the prototype will need more testing and finalization to satisfy the original
expected results. The validation has changed to be less strict and more in line with the updated
expected results.

4.0 Project Timeline, Estimated Resources, and
Challenges

4.1 Project Timeline
1. Design Documentation V1- Due Oct 6, 2019
2. Weekly Reports Interspersed throughout Semester
3. Hardware Delivery - Oct 9, 2019
4. Assembling Hardware - Oct 23, 2019
5. Design Documentation V2 - Due Oct 29-31, 2019
6. Software Completion - Nov 16, 2019
7. Integration - Dec 2, 2019
8. Design Documentation V3 (Final For Semester 1) - Due Dec 3-5, 2019
9. Prototype for Software and Hardware - Due Dec 09, 2019
10. Receive Physical Backpack - Due Jan 31, 2020
11. Testing of Prototype v1 - January 13-February 29 2020
12. Prototype v1- Due Feb 28, 2020
13. Testing of Prototype v2 - March 2020
14. Prototype v2 - Due March 31, 2020
15. Testing for final Prototype - March-May 7, 2020
16. Final Prototype - Due May 7, 2020

4.1.1 Project Gantt Chart

4.2 Feasibility Assessment

The end product of this project will be a backpack sprayer that has been modified to collect
data, such as GPS location, the direction of spray, and the flow of spray and can communicate
this data, along with other data, to a mobile application. Given existing hardware components, it
is realistic to accomplish this goal, and the team has experience with iOS application
development which will help in this project. The main challenges will be using new tools and
APIs and getting these technologies to work together and result in a successful project.

4.3 Personnel Effort Requirements

Task Hours Resource Textual
Reference/Explanatio
n

Research Hardware 8 David and Kevin Satisfy functional
requirements. Find
hardware that will give
necessary data.

Research APIs 8 Sean and Donald Determine if Mapbox is
suitable. Determine
how the project will use
APIs - logistics
between the app, etc.

Research iOS 8 Shuangquan and
Madison

Determine the
platform/tools that will
be used for the iOS
application.

Develop Hardware 64 David and Kevin Use each hardware
component, gather
data from Arduino.

Develop APIs 64 Sean and Donald Begin to create a map -
how the map will be
used for the project -
use mock data until
real data is available
from the application

Develop iOS 64 Shuangquan and
Madison

Create iOS an
application - all aspects
to fulfill requirements
and create a
user-friendly
experience.

Test Hardware 32 David and Kevin Ensure that hardware
data is accurate and
proper. Ensure it is
usable by the
application.

Test APIs 32 Sean and Donald Make sure the API part
works

Test iOS 32 Shuangquan and
Madison

Make sure the iOS
Partworks

Integration Testing 16 Everyone Make sure the
integration between the
items works

Final Testing 128 Everyone Make sure it works and
fulfills the project
requirements

4.3.1 Personal Effort Table

4.4 Other Resource Requirements
Aside from assistance in purchasing the hardware and accounts needed to complete the
project, the only resources that will be required is guidance and suggestions from the project’s
clients and advisor.

4.5 Financial Requirements
Part Description Quantity Unit Price Total

Arduino Mega 2560 1 $13.99 $13.99

Sprayer Field King 1 $154.95 $154.95

Flow Meter 1/2" Flow Meter 1 $9.95 $9.95

Compass Sensor Compass 1 $8.39 $8.39

GPS Sensor Neo 6M 1 $12.99 $12.99

Bluetooth Sensor DSD TECH 1 $7.99 $7.99

3/4" to 1/2" Adapter Hose Adapter 1 $7.99 $7.99

1/2" to 3/4" Adapter Hose Adapter 1 $3.21 $3.21

GPS Antenna Gain Antenna 1 $14.99 $14.99

 Total: $234.45

4.5.1 Bill of Materials/Financial Requirements

5.0 Testing and Implementation

This project will require unit testing for the application, integrity testing for the backend and API
components, and user-study testing for the hardware/sensors to ensure that the requirements
are fulfilled. Each requirement will require specific testing. The non-functional requirements will
need user-study testing. Testing hardware for accuracy is another example of user-study
testing. The individual components that will need to be tested are the application, specific
pages, functions, and use cases, the backend, map features, database interactions, hardware
sensors, hardware accuracy, hardware reliability, and non-functional requirements. These will
be outlined in specific tests and traced back to each requirement, to ensure that each is verified
by test(s).

5.1 Interface Specifications

5.1.1 For software (iOS)
1. XCTest framework - overall tests
2. XCTestCase - unit tests and performance tests.
3. XCUIElementQuery - user interface tests.

5.1.2 For Hardware
No interfacing needed for hardware testing. This will be completed by testing sensors
with known values and comparing the reported values. User-study tests will be used for
these requirements. The nature of these tests will be easily verifiable when using known
data, such as amounts of liquid sprayed, location, direction sensors are facing, etc.

5.2 Hardware and Software

5.2.1 For software (iOS)
We are using Xcode/XCTest to do all the testing which is iOS related.
Use the XCTest framework to write unit tests for the projects that integrate seamlessly with
Xcode's testing workflow. Tests assert that certain conditions are satisfied during code
execution, and record test failures (with optional messages) if those conditions are not satisfied.
Tests can also measure the performance of blocks of code to check for performance
regressions and can interact with an application's UI to validate user interaction flows.

5.2.1 For Hardware
To test hardware, we will use known values, such as known volumes of liquids for the flow
sensor, known directions (cardinal directions primarily) for the compass, and GPS coordinates
(longitude and latitude) and mapping software to compare GPS reported values. This will allow
us to determine the accuracy and functionality of the hardware.

5.3 Functional Testing
Examples include unit, integration, system, acceptance testing

ID Type of Tests Description

1 Unit Test Tests login button can log the
user in

2 Unit Test Tests sign up function can
register a new user

3 Unit Test A tests table view can display
correct data

4 Unit Test Tests cached data can be
stored in Core Data

5 Unit Test Tests the data can be
displayed properly in map
view

6 Integration Test Tests the data can be
received from the hardware
device

7 Integration Test Tests the data can be

rendered in map view
properly

8 Integration Test Tests data can be sent out to
cloud database

9 System Test Test iOS App can work with
all hardware devices

10 System Test Tests the system complies all
regulatory and legal
requirements

11 Acceptance Test Tests iOS App meets all
requirements

5.3.1 iOS Tests Table

ID Type of Tests Description

1 User Study After spraying a known
amount of liquid, verify
accuracy of Flow Sensor is
within accuracy requirement

2 User Study After facing a known
direction, verify the compass
reports the appropriate
direction

3 User Study After spraying at a known
location, verify that the GPS
reports a location within the
accuracy requirement

4 Acceptance Test Verify all hardware
requirements are met.

5.3.2 Hardware Tests Table

5.4 Non-Functional Testing
Testing for performance, security, usability, compatibility

ID Type of Tests Description

1 Performance Test Tests app launch speed is
within 3 seconds

2 Performance / Usability /
Compatibility Test

Tests UI is fluent with large
amount of data been
displayed

3 Usability/Compatibility Test Tests app runs on all iOS
devices

4 Usability/Compatibility Test Tests the UI of the all runs all
iOS model

5 Security Test Data can only be viewed by
the owner

5.4.1 iOS Non-Functional Tests Table

ID Type of Tests Description

1 Acceptance Test Verify that non-functional
requirements are met
(weight, portability, etc.)

2 Reliability Test Verify that hardware sensors
function as expected to
adhere to usability
requirements (ease of use).

3 Usability Test Verify that data is
transferable to the application
when in use (connection is
strong enough)

4 Usability Test Verify hardware works in
required weather conditions

5.4.2 Hardware Non-Functional Tests Table

5.5 Process
– Explain how each method indicated in Section 2 was tested
– Flow diagram of the process if applicable (should be for most projects)

5.5.1 Flow Diagram

5.6 Results

Currently, the initial operations of the various components have been verified and tested
informally. The hardware components have been tested for accuracy individually, and an
integrated program has been developed. The backend and map service has been developed
and tested with mock data. The iOS app provides an easy to use user interface that allows for
accounts, map viewing, spraying application data reading, and other features. The
communication via Bluetooth is also functional and the data is able to be packaged in JSON
format and sent from the hardware to the iOS application. The integration of all components is
functional, but needs more thorough testing and formal completion to be considered a truly
functional prototype.

5.6.1 iOS
For the iOS application, we successfully implemented the application. It’s capable of
logging/signing up users, showing the map, plotting pins, storing data both locally and in the
cloud, and editing user information/configuration. Data can be transmitted between hardware
devices and iPhones, BLE devices can be scanned, found, connected. In addition, the
application can be installed and run in all kinds of iOS devices running iOS 13 and above.

5.6.2 API

The Firebase API which lets users securely login to the application and store/receive historical
data works as intended. The use of Firebase Firestore allows for us to set up rules to only keep
data active for a set period of time. In addition, we have implemented features such as Forgot
Password and only allowing one account per email address.

The results for MapBox are within our current given margin of error. The API is currently taking
in the data provided by the GPS in the hardware and is displaying them correctly in the iOS
application.

5.6.3 Hardware
For the hardware components of the project, the team successfully tested each hardware
component. Each component's functionality passed, though the GPS reliability is not as the
requirements specified. This is an area for improvement in the future. Due to the changes in the
spring semester, some tests were not fully completed, so it is possible that once more
integration and formal testing have been completed, more improvements are necessary. The
team learned that the hardware components satisfy the requirements outlined in the project, but
improvements could be made. Due to sizing, an Arduino UNO PCB has been developed, and
the transition from Arduino Mega 2560 to Arduino UNO will yield more testing.

6.0 Closing Material

6.1 Conclusion
Currently, each component of the project is under development. Individually, each area,
including the iOS application, hardware/sensors and backend and APIs have made progress
towards their goals. The next step will be finalizing where each stands, and begin to integrate
each of these together, to create the final product. The goals include creating a functioning
application that receives data from the hardware, which then uses the backend and APIs to
display the data in a meaningful and efficient way to the end user. This will give the end user
smart data about a spraying application. The data will include GPS locations of the spray,
direction of the spray at each location, data about the spray (what chemical, when it was
sprayed, etc.), and the flow rate, or how much was sprayed, during the application.

6.2 References
This will likely be different than in the project plan, since these will be technical references
versus related work / market survey references. Do professional citation style(ex. IEEE).

“XCTest,” ​XCTest | Apple Developer Documentation​. [Online]. Available:
https://developer.apple.com/documentation/xctest. [Accessed: 18-Nov-2019].

